SystemC A Homogenous Environment to Test
Embedded Systems

Alessandro Fin # Franco Fummi #

Universita di Verona
DST Informatica
Verona, ITALY

Abstract

The SystemC language is becoming o new standard in
the EDA field and many designers are starting to use
it to model 3. SystemC has been mainly
adopted to deﬁue abstmct modela of hardware/software
components, since they can be easily integrated for rapid
prototyping. However, it can also be used to describe
modules at a higher level of detail, e.g9., RT-level hard-
ware descriptions and assembly software modules. Thus,
it would be possible to imagine a SystemC-based design
flow, where the system description is translated from one
abstractian level to the following one by always using
Syst YEP: Fory) The ad pti ofa zvv temC-
baaed design flow would be particularly efficient for test-
ing purpose as shown in this paper. In fact, it allows the
definition of a homogeneous testing procedure, applicable
to all design phases, based on the same ervor model and
on the same test generation strategy. Moreover, test pat-
terns are indifferently applied to hardware and software

p ts, thus making the proposed testing method-
ology particularly suitable for embedded systems. Test
patterns are generated on the SystemC description mod-
eling the system at one abstraction level, then, they are
used to validate the translation of the system to a lower
abstraction level. New test patterns are then generated
for the lower abstraction level to improve the quality of
the test set and this process is iterated for each transia-
tion (synthesis) step.

Keywords: functional testing, C++ models, embed-
ded systems verification.

1. INTRODUCTION

SystemC is a C++ class library and a design method-
ology [1] that is able to create efficient and accurate
models of software algorithms, hardware architectures,
system-level designs and interfaces; in other terms, all

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwisc, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES 01 Copenhagen Denmark

Copyright ACM 2001 1-58113-364-2/01/04...$5.00

17

Maurizio Martignano * Mirko Signoretto #

t Sitek S.p.A.
S.Giovanni Lupatoto
Verona, ITALY

components of an embedded system. The potential suc-
cess of this design methodology is due to the easy sim-
ulation, validation and alternatives exploration that can
be performed on a homogeneous C++ description. More-
over, the design team can be provided with an exe-
cutable specification of the entire system, which helps
in the design and development of related components.
This executable specification is a C++ program that,
when executed, exhibits the same behavior of the de-
scribed system. SystemC allows the increase of abstrac-
tion level of a project and the number of different archi-
tectural alternatives analyzed before the actual synthe-
sis of the hardware part.

Testing SystemC descriptions is still an open issue, since
the language is new and researches are looking for effi-
cient error models and coverage metrics, which can be
indifferently applied to hardware and software modules.
The adoption of typical and well analyzed software cov-
erage metrics [2] does not seem to be acceptable for ver-
ifying hardware design errors as pointed out in [3]. The
opposite solution could be the adoption of error mod-
els and test generation techniques developed in the past
years for hardware RT-level descriptions (e.g., [4, 5, 9].
Many error models and coverage metrics has been de-
fined to take advantage from the analyzed abstraction-
level [5, 6]. Some probalistic Test Pattern Generators,
based on genetic algorithms, have been developed with
the main goal of improving the performances of the de-
terministic TPGs {7, 8, 6]. They achieve good fault
coverage when applied to RT-level hardware represen-
tations with the target of testing gate-level faults.

However, the proposed testing methodology tries to cover
the whole design flow of an embedded system from the
system-level description to its structural representation,
by using the same error model and test generation tech-
nique. The aim of this testing technique is a simulation-
based verification of the design transformations neces-
sary to map a system description into hardware and
software modules. The accurate description level and
simulation performance reached by a SystemC descrip-
tion allows the definition of a high efficient testing pro-
cedure. Its description is the aim of this paper.

The rest of paper is organized as follows. Section 2
describes the use of SystemC for modeling different im-

SYSTEMC
BEHAVIORAL LEVEL

KRN
20
GO

o-4co

T

~ — e
AD-HOC HARDWARE || GENERAL PURPOSE EMBEDDED
cPU cPU
RT LEVEL RT LEVEL RT LEVEL
01001010
o) [ty B el (M
" 11
eI =] o ﬂ”ﬁf
-— 1 —
[[o | | e
GATE LEVEL GATE LEVEL GATE LEVEL
01001010
=,) © .
o o1 i XN ot [t
L, X] 12
10000011
10101010
. \ J L /

Figure 1: Design alternatives for the same system description.

plementation choices and the possibility of generating
functional test patterns on this homogeneous descrip-
tion. The fault model and the fault injection technique
are described in Section 3. The implementation choice,
based on an embedded CPU, is analyzed in Section 4,
where an entire design cycle is presented and incremen-
tal functional test patterns are generated. The last sec-
tion is devoted to concluding remarks and future works.

2. DESIGN ALTERNATIVES

Let us now examine some different design alternatives
for an embedded system modeled by using SystemC.
Figure 1 shows three different alternatives originated
from the same SystemC model.

We assume to represent the system as a set of inter-
acting processes, which will be implemented by using
ad-hoc hardware components, a software program run-
ning on a general purpose embedded CPU, a software
program running on an ad-hoc developed CPU or a mix
of these three implementation strategies.

The same initial description is used to generate test pat-
terns accordingly to the bit-coverage error model [11]
and the functional test generation approach [6] applied
in this case to a SystemC representation. SystemC plays
a different role for test pattern generation with respect
to these three different scenarios.

18

e Ad-hoc Hardware. No software components are
presented in this case, since the initial SystemC
description is completely mapped onto hardware
components. The design team uses SystemC to
define an initial model of the whole system, but
the following design phases are based on VHDL (or
Verilog). The translation of a SystemC description
into VHDL must be validated. This task is com-
plex since it implies a translation betweéen a cycle-
based language (SystemC) and a event-driven lan-
guage (VHDL, Verilog). To reduce the complexity
of this task, the behavioral description should be
transformed into a SystemC description at the RT
level. After this step, the translation of RT-level
SystemC code into RTL VHDL code is simpler,
since it consists of a syntactic translation rather
than a semantic trauslation [1]. Test patterns in-
herited from the system level can be used to check
the new hardware description. The change of the
design environment causes the adoption of a differ-
ent testing technique and error model for the fol-
lowing design phases, increasing the global effort
for the project. On the contrary by using a uni-
form SystemC description, a uniform test method-
ology can be applied.

¢ General Purpose CPU. The design goes on
by selecting a general purpose CPU description,
bought by an external vendor, and by adapting

mo» aDmaz -]
mo > namez-]

mo>mEmaz-

Figure 2: Application of the testing methodology to an example.

the SystemC system description to the lower de-
sign level. The model in SystemC can be used as
executable specification of the software to be im-
plemented on the target CPU. The SystemC inter-
acting processes become software modules running
on the CPU. The shorter is the abstraction gap
between the SystemC models and the target CPU
run time support, the easier is the translation pro-
cess. The system architecture must be completed
by a memory model, to store software, and some
other hardware components working as interfaces.
Both software and extra modules can be mod-
eled using SystemC. The adoption of a homoge-
neous design environment, as SystemC, makes the
testing procedure easier, since the same test tech-
niques and methodologies previously used can be
applied. The externally bought descriptions are
considered tested, therefore the inherited test set
is helpful to check the software routines and all
added components. Moreover, designers could buy
the SystemC description of each added hardware
component and translate the remaining processes
.of the behavioral model as software routines. Adopt-
ing this approach the inherited test set would be
used to test software and components interaction.

Ad-hoc Embedded CPU. In this case, project
constraints imply the design of an ad-hoc embed-
ded CPU. Typical examples are Systems on Chip
(SoC’s). The design team has to define every mod-
ule: CPU, memory and interfaces. The flexibil-

ity and description power of SystemC must be
exploited to quickly find the best configuration
(hardware and software). Designers can easily par-
tition processes between hardware and software to
observe the performance of these different configu-
rations. Again, it is possible to maintain the same
test technique and error model applied at the sys-
tem level by using SystemC to describe the system
architecture at the lower description level. Test
sets derived from the first test phase are essential
to check this critical step. The number of com-
ponents to test is larger than those of the previ-
ous design alternative. Moreover, the complexity
of components under test is high (i.e. embedded
CPU). Thus, the develop t of test patterns on
a more simple description, the system description,
can simplify this task.

For each design alternative, test sets obtained from pre-
vious design phases are used to validate each new design
step. Moreover, test sets are improved, at each design
step, by specific-level test patterns.

3. TESTING TECHNIQUE

Every time a design description, at an identified abstrac-
tion level, is converted to the description at a lower level,
the necessity of a validation phase is necessary. This
task is usually performed by using a simulation-based
approach whenever formal verification techniques can-
not be applied. This test is performed by applying the

19

whole set of test patterns, identified at the higher ab-
straction level, on the new description at the lower level.
Moreover, this set of test patterns is extended at each
development phase with some new level-specific test vec-
tors that are simulated on the previous-level representa~
tion to identify correct responses. By using a common
description language covering all phases of a design hi-
erarchy, this testing strategy could be repeated from
the system level to the structural level. SystemC could
be this common description language. Moreover, in the
case tird-party blocks are used, an authomatic trans-
lation of VHDL or verilog descriptions into SystemC-
based representations can be performed as described,
for instance, in [10].

The proposed testing strategy is based on the bit-coverage
error model [11], which shows a high correlation between
errors modeled on descriptions of different abstraction
levels. This error model has been used to correlate test
patterns between the behavioral, RT and gate-level for
hardware components only. In this paper, a similar ap-
proach is applied to embedded systems, thus testing
both hardware and software parts. Each bit of each
variable, condition and input/output port is set stuck-
at zero or one to obtain erroneous SystemC descriptions
that are compared to the error-free description in order
to identify functional test patterns.

Two different programs have been adopted to test the
embedded CPU. The FIR filter algorithm, available from
the SystemC package, and a test oriented algorithm.
The two algorithms have different targets. The first is
application-oriented and it canbe useful to test the real-
* ization of a specific algorithm on the developed embed-
ded CPU. It can not reach a high global error coverage
on the average, because it use a subset of the instruction
set and the errors in the memory can not be detected if
they are outside the data and code segments. However
it is shorter and it requires less knowledge about the
CPU. Moreover, it can be enough to design a embedded
CPU for a specific target application. Otherwise if the
target is to design an embedded CPU reusable for more
programs and it is possible to spend more time on test-
ing then the test-oriented algorithm has to be applied.
It use all the instrucions available and it is allocated
in differen positions in the memory of the embedded
architecture to reach a higher global error coverage.

The test patterns are randomly generated. For both
testing algorithms, the test pattern are the data ma-
nipulated by the algorithms. To reach a higher error
overage, the random test pattern generator can be re-
pleaced by a deterministic one. .

4. AD-HOC EMBEDDED CPU

The proposed testing methodology is applied in this sec-
tion to the design alternative based on an ad-hoc em-
bedded CPU. We consider the problem of designing and
verifying the FIR filter included in the SystemC docu-
mentation [1].

#SystemC lines | #Errors |
level 1 1529 606
level 2 2637 750 |
level 3 3043 890

Table 1: Description features.

Figure 2 shows the application of the proposed testing
methodology to the FIR example. General transforma-
tions of SystemC models are reported on the leftmost
side of the figure. The system specification (level 0) is
implemented by using an embedded CPU. On the right-
most side, the exemplification on the FIR filter is shown.
The specification is converted at first into a description
(level 1) composed of interacting processes representing:

e the system interfaces;
o the system behavior.

The adopted error model is used in this level to gener-
ate a first set of functional test patterns to verify the
coherence with the specification.

Then, an abstract model of the CPU is written in Sys-
temC (level 2) in order to verify the correct execution
of the assembly code derived from the software system
behavior of level 1. This check is performed by apply-
ing the previous set of test patterns to the description
of level 2, where a new set of errors is considered. Such
errors are identified by using the same error model, but
they are injected into the level 2 SystemC description.
New test patterns are added to the initial set in order
to cover such new errors. Correct output responses of

~ such new test patterns are obtained by simulating them

20

on the level 1 SystemC description.

In the analyzed case, the CPU is designed to be em-
bedded into the chip, thus, the CPU is remodeled in
SystemC at the RT level (level 3 in 2). Previously iden-
tified test patterns are used at this step to verify the
functionality of the CPU with respect to the embedded
program. Moreover, this set is extended by using the
same error model applied to the SystemC description
at level 2. Correct output responses of such new test
patterns are obtained by simulating them on the level 2
SystemC description.

This analysis reaches the RT level, but it could be ex-
tended to the gate level by using the same testing strat-
egy. In this case a useful tool would be an automatic
translator of VHDL or verilog descriptions into SystemC-
based representations as the one described in [10].

4.1 Application to the FIR benchmark
Partial SystemC representations covering the different
design levels are reported in the following. The partial
level 1 system architecture is reported in Figure 3, while
Figure 4 and Figure 5 show, respectively, the system at
level 2 and 3.

SC_MODULE(fir) {

sc.in<bool> reset;

sc.in<bool> input.valid;
sc.in<int> sample;
sc.out<bool> output data_ready;
scout<int> result;

sc_in_clk CLK;

SC_CTOR(fir) {
SC_.CTHREAD(entry, CLK.pos());
watching(reset.delayed() == true);
#include " fir.const.h”

y e
Figure 8: Partial Syst
the FIR filter.

C level 1 d iption of

The assembly language of the embedded CPU is sum-
marized in Table 2. Each 16-bit instruction is composed
of a 10-bit field for the address and a 6-bit field for the
instruction code. The C++ program describing the FIR
filter is compiled into 320 assembly instructions, which
are modeled by using SystemC as shown in Figure 5.

Table 3 describes the main features of the adopted bench-
mark: SystemC code lines and injected errors at each
design level. Summarized results on the application of
the described testing methodology are reported in Ta-
ble 4.1, in terms of modeled errors, test patterns identi-
fied, error coverage of the test set of the previous level
and of the test set extended by modeling and covering
new errors of the level.

Tnstruction _Explanation Code
ACC + MEM[IND] - ACC__ | 000001 |
SHIFT.R | SHIFT_RIGHT(ACC) — ACC | 000010
LOAD MEMIIND] - ACC 000100
STORE | ACC -+ MEM[IND] 001000
JMP IND —+ PC 010000
JNZ IF (ACC ({} IND - PC 010001
HALT Halt the CP 100000
NOP No operation others

Table 2: Assembly Language of the embedded
CPU.

Functional test patterns have been easily generated and
they allowed the correct translation of the system de-
scription from one design level to the following one.

5. CONCLUDING REMARKS _

The paper analyzes three different design strategies to
implement an embedded system starting from an initial
SystemC description. In all cases, the use of SystemC
as a homogeneous development environment produces
some benefits with respect to testing purposes. The
same error model can be applied to the system descrip-
tion at the different abstraction levels, thus allowing the

21

application of the same functional test generation tech-
nique during the entire design flow. Moreover, same
technique is adopted for testing both hardware and soft-
ware components. This technique produces test pat-
terns aiming at verifying the correct translation of the
design from the system to the structural level.

SC_.MODULE(cpu.mono) {

sc_in<bool> start;
sc.in<bool> clear;
sc_in<scIv<16> > data_in;
sc.in<bool> clk;
sc.out<bool> wr;
sc.out<sclv<16> > accout;
sc.out<sciv<10> > addr;

SC_CTOR(cpu-mono) {
SC_.METHOD(evaluate);
sensitive_pos << clk << start << clear;

}
void evaluate();

h

SC_.MODULE(mem) {
sc.in<sciv<10> > addr;
sc.in<bool> wr;
sc.in<scv<16> > accout;
sc-out<scv<16> > datain;
sclv<16> memory[1024];
void mmu();

SC_CTOR(mem) {
for (int i=0; i<1024; i++)
memory[i] = "0000000000000000" ;

SC.METHOD(mmu);
sensitive << addr;

}
h

Figure 4: Partial SystemC level 2 description of
the FIR filter.

The proposed testing methodology has been applied to
an example architecture, where an embedded CPU is
designed and integrated with embedded software. The
entire testing cycle is covered by constantly expanding
and refining functional test patterns generated by using
the same error model and test generation technique. Fu-
ture work will improve the effectiveness of the adopted
functional test generation technique in order to analyze
more complex systems.

6. REFERENCES
{1] SystemC User’s Guide. Synopsys, CoWare,
Frontier Design, versson 1.1, 2000.

[2] G.J. Myers. The Art of Software Testing. Wiley -

Embedded Algorithm ‘Test Oriented Algorithm
[Description || #Test Patterns | %Prev. Err.Cov. | %Err.Cov. || #Test Patterns | %Prev. Err.Cov. | %Err.Cov.
level 1 50 - 98.5 - - -
level 2 177 44% 63% 93 - 90.3% |
level 3 321 69% 1% 178 78.5% 88.9

Table 3: Functional test generation for embedded and general porpose programs.

SC_CTOR(cpu.rtlautl) {

// Port binding between modules

ves

(3]

Interscience, New York, 1979.

M.B. Santos, F.M. Gonalves, I.M. Teixeira and
J.P. Teixeira. RTL-based Functional Test
Generation for High Defect Coverage in Digital
SOCs. Proc. IEEE European Test Workshop
(ETW), pp.99-104, 2000.

SC.MODULE(cpu.rtl) { {4] R. Vemuri and R Kalyanaraman. Generation of
sc.in<sc_logic> start; design verification tests from behavioral VHDL
sc.in<sc ogic> clear; programs t.ming path enumeration and constraint
sc_in<sclogic> ok; programming. IEEE Trans. on VLSI Systems,
scin<sclv<16> > datain; 3(2):201-214, June 1995.

. [6] F. Corno, M. Sonza Reorda, G. Squillero.
sc.out<bool> we o High-Level Observability for Effective High-Level
sc.out<sc.lv<16> > accout; ATPG. Proc. IEEE VLSI Test Symposium, 2000
scout<sciv<10> > addr; 4 -

. [6] F. Ferrandi, A. Fin, F. Fummi and D.Sciuto, An
// Internal Signals Application of Genetic Algorithms and BDDs to
oo . Functional Testing. Proc. IEEE International
. Conference on Computer Design (ICCD),
//Modules pointers pp.48-56, 2000.
controller.ovfsm_syn *controller.instance; .)
clock_genfsm_syn *clockGenerator_instance; [71 E. M. demck, J.H. Pau.al, G. S: Greenstein, and
clock.genfsmsyn *clockGenerator.1_ instance; T. M. Niermann, A genetic algorithm framework
clock_gen_fsm_syn *clockGenerator_2_instance; for test generation. IEEE Trans. Computer-Aided
clockgen_fsm.syn *clockGenerator_3_instance; - Design, vol. 16, no. 9, pp. 1034-1044, Sept. 1997.
IR_stx.syn *instruction.register_instance; " . :
PC_fsm._syn *program_counter_instance; (8] M. S: H‘uw, E.M. B.udmck, §nd J. H. Patel,
acefs * ! . X Application of genetically engineered
c.fsm.syn accumulator.instance; . . s .

. . i finite-state-machine sequences to sequential circuit
decoder_sse.syn ‘decoder_instance; - 3 X

* | i ATPG. IEEE Trans. Computer-Aided Design, vol.
mar_stx_syn memory_address.instance; 17 3 239954, March 19 .
out.modl *out.modulel_instance; » Bo. 3, pp- » Mar 98.
out.mod2 *out_module2_instance; [9] F. Fallah, S. Devadas, and K. Keutzer. OCCOM:
out_mod3 *out_module3_instance;

Efficient Computation of Observability-Based Code
Coverage Metrics for Functional Verification. Proc.
IEEE DAC, pp. 152157, 1998.

[10] N. Agliada, A. Fin, F. Fummi, and

M. Martignano. On the Reuse of VHDL Modules

} into SystemC Designs. submitted.
. -, . ., 3 y . .
} . [11] F. Ferrandi, F. Fummi, L.Gerli, and D. Sciuto
Figure 5: Partial SystemC level 8 description of Symbolic Functional Vector Generation for VHDL
the FIR filter. Specifications. Proc. IEEE Design Automation and

Test in Europe Conference (DATE), pp. 442446,
1999.

22

